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Abstract. The results obtained by a recently proposed empirical potential for silicon which
includes four-body terms are compared with the results of quantum-mechanical tight-binding
calculations. In particular, the gronnd-state energy and structure of the Sisz cluster were
computed by both methods. By performing an equivalent calculation using only up to three-body
interactions we demonstrate that the four-hody term is absolutely necessary in order to achieve
goad agreement with the quantum method.

Silicon is undoubtedly one of the most technologically important materials. For this reason
its properties have been studied extensively, both experimentally and theoretically. Besides
its crystalline ground state (diamond structure), phases of Si with highly reduced symmetry
such as amorphous Si, Si surfaces, interfaces and clusters have very interesting and distinct
properties. This makes the study of such phases, both scientifically and technologically,
attractive.

In this work we focus our attention on Si clusters for which both the experimental data
and the theoretical information are rather limited. Experimentally the core of the information
is often limited only to their mass spectrum [1, 2], whereas accurate ab initio calculations are
restricted to clusters up to ten atoms [3,4]. For larger closters, one has to resort to empirical
or semi-empirical methods to study their structures, cohesive energies or dynamics.

Classical model potentials, if their validity is well established, belong to this category of
methods and can produce valuable information about large clusters. For this reason, several
attempts have been made so far to develop a clagsical model potential for silicon [5-91.
Classical model potentials have the advantage over any elecironic calculational methods in
that molecular dynamics calculations for determining structural or dynamic properties of the
material can be performed rapidly. Moreover, an analytic expression for the interactions
is given, so that a precise picture of the chemical properties of the material is obtained.
Each of these models can manage to simulate several of but not all the properties. For
example, the Stillinger—Weber (W) [5] model is constructed to simulate the crystalline
ground state (diamond structure), the melting point and the liquid phase. On the other
hand, the parameters of the Biswas—Haman [6] model are fitted to a database of quantities
involving unstable periodic bulk stuctures, which were calculated by the local-density
" approximation (LDA). As a result these models have a limited range of validity and fail to
simulate Si clusters,
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The construction of a universal classical model is an cpen question at this moment. In
other words, none of the models so far proposed, can reproduce structural or dynamical
properties of all phases of silicon, namely bulk, surface, clusters, amorphous and liquid,
without changes in its parameters.

An altemative approach to the study of the structural and dynamic properties of silicon
is the tight-binding molecular dynamics (TBMD) method [10]. The tight-binding method is
computationally useful because it permits the use of different parametrization schemes for
the construction of the Hamiltonian, while employing a minimal basis set. The basis set
used here, however, is taken to be strictly orthonormal by neglecting the overlaps. While
this may reduce its accuracy, one can still obtain good agreement with ab initie values for
small silicon clusters [16,18]. We call this orthogonal tight-binding molecular dynamics,
or simply TBMD. This method can be very useful in determining the properties of large
Si clusters without any particular assumption about the form and the nature {(e.g. two-
body, or three-body) of the potential than a classical molecular dynamics (CMD) method.
Nevertheless, the TBMD method is slower and computationally more costly than the CMD
method. Thus from the fundamental and the practical point of view it is usefud to use the
TBMD results to test the range of validity of any classical model.

Specificaily in this paper, we compare the results obtained by the TBMD method [10, 11]
with those produced by a recently proposed classical model [12]. This model is an
improvement of the SW model and includes a next-nearest-neighbour interaction in the
four-body term, so that the directionality of the covalent bonds depends not only on the
bond angles but also on the dihedral angles. This model hag been previously tested in
simulating the +/3 x /3 surface reconstruction on the (111) surface, and for obtaining the
ground-state cohesive energies and structures of small Si clusters. The results obtained by
this model are in good agreement with ab initio results for both clusters and surfaces. In the
present work we have used this empirical potential 1o determine the ground-state structure
of large Si clusters (Sizz). The results are then compared with the comresponding results
obtained by the TBMD method.

First, we briefly review the TBMD method. More details can be found elsewhere [11]. In
the tight-binding scheme the total energy is written as a sum, namely UV = Ug+ Urep+ Ubond
[11, 16}, with U, obtained by summing the energies ¢; of the occupied one-¢lectron states:

Uy = Zieg. )

The electronic energies ¢; are obtained from a semi-empirical tight-binding Hamiltonian
{13]. The Hamiltonian parameters are taken from [14]. U, is given by a repulsive pair

potential:
Up =60 @

i j»i
Here r;; is the distance between the atoms [ and f. Both the Hamiltonian matrix eleraents and

¢(r) are taken to scale exponentially with the interatomic distance r [11]. The coefficient
Ucp of the repulsion term is chosen so that, for a Sip dimer,

Urp(d) = Uy *(d) — Uei(d) — Unona &)

where US™(d) is the experimental cohesive energy. The bond-counting term Usong Was
introduced by Tomanek and Schluter [16] 10 bring cohesive energies into agreement with
ab initio values [3,4). 1t is fitted with a quadratic expression

Ubond = Nlalny/NY* + b(ny/N) + c] )
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with @ = —1.33 eV, b = 1.76 eV and ¢ = —0.49 eV and »n, is the number of occupied
bonds, obtained by including all bonds shorter than 3.4 A.

The force F; associated with an atomic coordinate x is given by differentiating the total
energy U: Fr = —3U/dx. )

The electronic part of the force is computed from the Hellmann—Feynman theorem:

3Uc i
Fi=e—Z=22 ZG—QG(EF—&) (5)

dei /ox = wa(BH/ax)w,- , - (®

where € and y; are determined from solving the eigenvalpe equation for a cluster
Hamiltonian; Hr; = €.

Thus, using the TBMD simulation for a Si; dimer, we obtained a binding energy of
—3.36 ¢V and a bond length of 2.28 A. The corresponding experimental values are —3.34 eV
and 2.25 A, respectively. The experimental values were taken from [3]. The present tight-
binding scheme has been used to reproduce equilibrium structures for small Si clusters [15]
in agreement with the ab initio energy minimization calculations [3,4]. We note that a
TBMD scheme [18] similar to ours has been used to obtain equilibrium geometries for the
same clusters, also in agreement with ab initioc work [3,4].

- We recently proposed a classical model for silicon [12] which is an improvement of the
swW model [5). In the SW model the strength of the Si-Si covalent bond is expressed by a
two-body term, while the directionality of the bonds is modelled by a three-body term. This
form, where the term describing the directionality of the bonds is separate from the term
describing the bond strength, is an advantage of the SW model! over other models because its
parameters can be selected in a natral way by ftting 10 important properties of silicon. It
was shown in [8] that the correct description of the directionality of the bonds in Si clusters
requires also the introduction of a four-body term. In more recent work [12], the study of
surface reconstruction on the (111) surface showed that a four-body term with a dihedral
angle dependance should be included in the model. The model, therefore, has the following
form.

First a two-body term is constructed to simulate the interaction between the Si atoms
in the diamond structure:

= A(B/r* — Dexpla/(r — R)]. B (7a)

Then the three-body and four-body terms are introduced to describe the bond angle
dependance of the directionality of the covalent Si-Si bond. These many-body terms have
positive (repuisive) contribution to the total emergy of a Si cluster. Specifically, the fcmh
of the three-body term is V3 = fijit + hije + hizj, Where

hjie = A3 fij ﬁ'k_{l —expl—Q(cos & + %)2]}' (75)
The form of the four-body term is Vy = giju + gjim + Buijt + Ziijk» where '
gijut = Aafij fir fulll — exp{— QU(cos gix + $)% + (cos 8 + 1) + (cos b + M. (7e)
The functions '

fi=exply/y—RN &)

are cut-off functions, so that the interaction vanishes smoothly for r;; > R.
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Finally, the second four-body term. which was introduced to include next-nearest-
neighbour interactions in the model by incorporating a dihedral angle dependence, has
the form Vi, = gniju + gnji + §hiije + gnyje, where

8hijit = hapn fij fir full1 — exp{—Q[(cos & + %)2 + (cos s — §)*(cos Oyju + 1)
+ (cos 8 + P11 (Te)

with &3, the angle between the vectors 7; and . The parameters

A=163eV B=11581A"  a=20954 R=37714A

. ®
A3 =20eV y=24A r=12.0eV han =22.0 eV Q=17

are selected to reproduce several geometric and dynamic properties of Si, namely the energy
per atom and the structure of the crystalline ground state (diamond structure), the lattice
constant, the energy difference between the diamond and the FCC structures, and the cohesive
energy of the Sijg cluster.

As an example for testing and comparing the TBMD method and our classical model,
we study the Siz; cluster. This cluster is an important, experimentally determined magic
number, for which recent theoretical calculations based on the LDA offer a rather provocative
interpretation of its stability, namely, that its ground-state structure is probably responsible
for its stability. Specifically, a model for the ground-state stucture of Sis;. which can form
a structure similar to the 7 x 7 reconstruction of the Si(111) surface, has recently been
proposed [17] (figure 1(a)).

1t is well known that finding the lowest-energy configuration for a given size cluster by
locating and comparing all the local energy minima is extremely difficult for N > 10 [19].
Because of the long computational time needed for the method, only 2 limited part of the
configuration space can be scanned. On the contrary the use of & classical potential model
removes this restriction and permits the scanning of a Jarger pari of the configuration space.
The model (7} was used to calculate the ground-state structure and cohesive energy of the
cluster Siz;. To optimize the structure of the Sis; cluster and to obtain its ground state we
used the Monte Carlo simulated annealing {MCSA) technique. The initia! guess was selected
to be the structure given in [17] as a probable ground state (figure 1(a)). Then the MCSA
method converged to a new structure after 3 x 10° trials.

The structure obtained by this model as the ground state for the Sizy cluster exhibits
important differences from the initial guess (figure 1(b)). Specifically, the average bond
length is 2.65 A and the average coordination number is 6.8, while, in the structure proposed
in [17], the average bond length is 2.4 A and the average coordination number is 3.5,
Therefore the structure obtained by the classical model (7) has a structure similar to glass
or liquid silicon, while the structure of the initial guess is more diamond like. The cohesive
energy of the new structure is 3.89 eV atom™!, while the cohesive energy of the metastable
state (1z) as calcualted by the same classical model is 3.51 eV atom™!. We also note
that other workers employing the tight-binding energy minimization scheme of Tomanek
and Schiuter [20] for Siss have obtained a more close-packed structure than proposed by
Kagziras (171,

The above result offers the possibility for a test of the validity of the classical model
(7). In other words, the cohesive energy of both structures (figures 1(z) and 1(b)) can be
computed by the TBMD method. Using as an initial condition the structure in figure 1(h),
the TBMD calculation converged to the structure shown in figure 1(c). The cohesive energy
of the new structure is 4,09 eV atom™!, the average bond length is 2.5 A and the average
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Figure 1. Ground-state structures for the Siz3 cluster obtained by {a} the LDA method [17], (5)
the present classical model, (¢) the T8MD method and (d). the dlassical sw model. The structure
shown'in (&) was used as an initial guess for obtaining the structure in (b) using the present
classical model.

coordination number is 6.2. Therefore, this structure has the same qualitative characteristics
as the ground-state structure obtained by the classical model (7). The striking agreement
between the results of the TBMD method and the classical model strongly suggests the
proposed structure to be a genuine ground state for Sis3.

Furthermore, we studied the same problem using the SW model as a typical three-body
potential, in order to demonstrate the importance of the four-body terms. The ground-state
structure obtained by the MCSA method is shown in figure 1(4) and it has similar qualitative
features.to the structure in figure 1(g@). Therefore, we have verified that the introduction
of the four-body terms is essential for simulating the quantum results. Table 1 presents all
the results for the Sisy cluster obtained by the sw three-body model, the present four-body
model and the TBMD method.

Table 1. Comparison of the ground-state structures of Sis3 produced by the present four-body
potential model, the TBMD method, the LDA method and the three-body classical sW model.

Method Average bond length (A) Coordination number Cohesive energy per atom (V)
LDA - 240 35 —_

sW 245 ' 3.7 ‘ . 335

Present model 2.65 : 6.8 423

TBMD 2.50 ) 62 4.09
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The tight-binding method can also provide some information about the electronic
structure of the Sis3 cluster. Specifically, the energy gap was found to be 0.52 ¢V. The
same set of tight-binding parameters gives a gap of 1.13 eV for bulk silicon, Therefore, the
cluster has a considerably sironger conducting character than the crystalline silicon.

In conclosion we note that the inclusion of the four-body interaction is absolutely
necessary to achieve good agreement between the classical and gquantum descriptions of
Si clusters. Moreover. the structural properties of the 3iz; ground state obtained by both
the classical and the TBMD methods are qualitatively the same, i.e. the ground state of Sizs
is found to be not diamond like, conirary to previous suggestions.

The successful simulation of cluster properties by the present model together with
previous results on surface properties give a strong indication that this model could be
considered to be closest to universal, which can be used to simulate, within acceptable
limits of accuracy, the properties of all phases of silicon. Moreover, the verification of
the Sis; ground-state structure, determined by the present model using the TBMD method,
suggests important predictive possibilities for this model. The tight-binding model used here,
although simple, still retains all the salient features of other tight-binding schemes [16, 18]
used to obtain good agreement with gb initio results for small clusters. Tight-binding
methods generally seem to favour close-packed structures for these clusters, indicating
a need 0 go to larger clusiers to obtain bulk-like coordination, The inclusion of non-
orthogonality may favour more open stuctures for small clusters than obtained using the
orthogonal scheme. More work is needed in this area.
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