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Abstract. ?he results obtained by a recently pmposed empirical potential for silicon which 
includes four-body re- arc -pared with the resulis of quantum-mechanical tight-binding 
calmlations. In paniculu, the ground-state energy and ~fmcmre of the Sin  duster were 
canputed by both methods. By perfoming an equivalent calculation using d y  up to three-body 
interactions we demonstrate that the four-body tem is abnollIlely necessary in order to achisve 
gmd agreement with the quantum method. 

Silicon is undoubtedly one of the most technologically important materials. For this reason 
its properties have been studied extensively, both experimentally and.theoretic@y. Besides 
its crystalline ground state (diamond structure), phases of Si with highly reduced symmetry 
such as imovhous Si, Si surfaces, interfaces and clusters have very interesting and distinct 
properties. This makes the study of such phases, both scientifically and technologically, 
attractive. 

In this work we focus our attention on Si clusters for which both the experimental data 
and the theoretical information are rather limited. Experimentally the core of the information 
is often limited only to their mass spectrum [ 1,2], whereas accurate ab initio calculations are. 
restricted to clusters up to ten atoms [3,4]. For larger clusters, one has to resort to empirical 
or semi-empirical methods to study their structures, cohesive energies or dynamics. 

Classical model potentials, if their validity is well established, belong to this category of 
methods and can produce valuable information about Iargeclusters. For this reason, several 
attempts have been made so far to develop a classical model potentjaI for silicon L5-91. 
Classical model potentials have the advantage over any electronic calculational methods in 
that molecular dynamics calculations for determining structural or dynamic properties of the 
material can be performed rapidly. Moreover, an analytic expression for the interactions 
is given, so that a precise picture of the chemical properties of the material is obtained. 
Each of these models can manage to simulate several of but not all the properties. For 
example, the Stillinger-Weber (SW) [51 model is constructed to simulate the crystalline 
ground state ( d i i o n d  structure), the melting point and the liquid phase. On the other 
hand, the parameters of the Biswas-Ha” [6] model are fitted to a database of quantities 
involving unstable periodic bulk structures, which were calculated by the local-density 
approximation (LDA). As a result these models have a liiited range of validity and fail to 
simulate Si clusters. 
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The consrmction of a universal classical model is an open question at this moment In 
other words, none of the models so far proposed, can reproduce structural or dynamical 
pmper&ies of all phases of silicon, namely bulk, surface, clusters, amorphous and liquid, 
without changes in its parameters, 

An alternative approach to the study of the st~chual  and dynamic properties of silicon 
is the tight-binding molecular dynamics (TBMD) method [lo]. The tight-binding method is 
computationally useful because it permits the use of different parametrization schemes for 
the construction of the Hamiltonian, while employing a minimal basis set. The basis set 
used here, however, is taken to be shictly o r t h o n o d  by neglecting the overlaps. While 
this may reduce its accuracy, one can still obtain good agreement with ab initio values for 
smaU silicon clusters [16,18]. We call this orthogonal tight-binding molecular dynamics, 
or simply TBMD. This method can be very useful in determining the properties of large 
Si clusters without any particular assumption about the form and the nature (e.g. two- 
body, or three-body) of the potential than a classical molecular dynamics (Cm) method. 
Nevertheless, the TBMD method is slower and computationally more costly than the CMD 
method. Thus from the fundamental and the practical point of view it is useful to use the 
TBMD results to test the range of validity of any classical model. 

Speci6cally in rhis pager, we compare the results obtained by the TBMD method [lo, 111 
with those produced by a recently proposed classical model [12]. This model is an 
improvement of the sw model and includes a next-nearest-neighbour interaction in the 
four-body term, so that the directionality of the covalent bonds depends not only on the 
bond angles but also on the dihedral angles. This model has been previously tested in 
simulating the f i  x 4 surface reconstruction on the (11 1) surface, and for obtaining the 
ground-state cohesive energies and structures of small Si clusters. The resulu obtained by 
this model are in good agreement with ab initio results for both clusters and surfaces. In the 
present work we have used this empirical potential to determine the gound-state structure 
of large Si clusters (Si33). The results are then compared with the corresponding results 
obtained by the TBMD method. 

First, we briefly review the TBMD method. More details can be found elsewhere [l 11. In 
the tight-binding scheme the total energy is written as a sum, namely U = + U,+ U b ~ d  
[ll, 161, with Vel obtained by summing the energies ~i of the occupied one-electron states: 

The electronic energies ei are obtained from a semi-empirical tight-biding Hamiltonian 
[131. The Hamiltonian parameters are taken from [14]. U, is given by a repulsive pair 
potential: 

Here rij is the distance between the atoms i and j .  Both the Hamiltonian ma!rix elements and 
+(r)  are taken to scale exponentially with the interatomic distance r [ll]. The coefficient 
U, of the repulsion term is chosen so that, for a Si? dimer, 

where U : p ( d )  is the experimental cohesive energy. The bond-counting term &.a was 
introduced by Tomanek and Schluter [I61 to bring cohesive energies into agreement with 
ab initio values t3.41. It is 6tted with a quadratic expression 
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with a = -1.33 eV, b = 1.76 eV and c = -0.49 eV and nb is the number of occupied 
bonds, obtained by including all bonds shorter than 3.4 A. 

The force F, associatrd with an atomic coordinate x is given by differentiating the total 
energy U: F, = -aU/ax. 

The electronic part of the force is computed from the HeUmann-Feynman theorem: 

- 
~ a s / a x  = * ! ( a n / a x ) $ i  ~ . (6) 

where and @; are determined from solving the eigenvalue equation for a cluster 
Hamiltonian: H+i = E ; & .  

Thus, using the TBMD simulation for a Si2 dimer, we obtained a binding energy of 
-3.36~eV and a bond length of 2.28 A. The corresponding experimental values are -3.34 eV 
and 2.25 A, respectively. The experimental values were taken from [3]. The present tight- 
binding scheme has been used to reproduce equilibrium structures for small  si^ clusters [I51 
in' agreement with the ab inirio energy minimization calculations [3,4]. We note that a 
lBMD scheme [18] similar to OUTS has been used to obtain equilibrium geomehies for the 
same clusters; also in agreement with ab initio work [3,4]. 

We recently proposed a classical model for silicon [12] which is an improvement of the 
SW model [5]. In the SW model the shength of the Si-Si covalent bond is expressed by a 
two-body term, while the directionality of the bonds is modelled by a threebody term. This 
form, where the term describing the directionality of the bonds is separate from the term 
describing the bond strength, is an advantage of the sw model over other models because its 
parameters can be selected in a natural way by fitting to important properties of silicon. It 
was shown in [8] that the correct description of the directionality of the bonds in Si clusters 
requires also the introduction of a four-body term. In more recent work [12], the study of 
surface reconstruction on the (1 11) surface showed that a four-body term with a dihedral 
angle dependance should be included in the model. The model, therefore, has the following 
form. 

First a two-body term is constructed to simulate the interaction between the Si atoms 
in the diamond structure: 

Vz = A ( B / r 4  - 1) exp[a/(r - R)]. (70) 

Then the three-body and four-body terms are inmcduced to describe the bond angle 
dependance of the~directionality of the covalent S iS i  bond. These many-body terms have 
positive (repulsive) contribution to the total energy of a Si cluster. Specifically, the f& 

(7b) 

Of the three-body teIIll is V, = hjjn + h;jk + hjkj, where 

hjia = h3kjfikCl -exp[-Q(cosBjix + $)'I]. 
The form of the four-body term is V4 = gijnr + gjixr + gxijl + glijr, where 

gip1 = h4f,jkafi~ui - exp(-e[tcosej;n + f? + (cosejil + f)'+ (COS8kil+ jYinn. t7c) 

The functions 

fij = exp[y/(rjj - R ) ]  (7d) 

are cut-off functions, so that the interaction vanishes smoothly for rjj > R. 
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Finally, the second four-body term. which was introduced to include next-nearest- 
neighbour interactions in the model by incorponting a dihedral angle dependence, has 
the form v*, = gnijkl f gfljikl + gnkijl + gnlijk, where 

gflijtr = h4.f;jfjth~El - eXp(-Q[(COS8ijk + $)'+ (COS0ijkf - i)2(cos0ijkl f 1)' 

+ (coS8jkf f $*I)] (7d 

with 8;jkt the angle between the vectors rji and r k l .  The parameters 

A = 16.3 eV 

h3 = 2.0 eV y = 2.4 8, hq = 12.0 eV h4,, = 22.0 eV Q = 1.7 

are selected to reproduce several geometric and dynamic properties of Si, namely the energy 
per atom and the structure of the crystalline ground state (diamond structure), the lattice 
constant, the energy difference between the diamond and the FCC struc[uTes, and the cohesive 
energy of the Silo cluster. 

As an example for testing and comparing the TBMD method and our classical model, 
we study the Si33 cluster. This cluster is an important, experimentally determined magic 
number, for which recent theoretical calculations based on the LDA offer a rather provocative 
interpretation of its stability, namely. that its ground-state structure is probably responsible 
for its stability. Specifically, a model for the ground-state structure of Si33. which can form 
a structure similar to the 7 x 7 reconstruction of the Si(ll1) surface, has recently been 
proposed (171 (figure I@)). 

It is well known that finding the lowest-energy configuration for a given size cluster by 
locating and comparing all the local energy minima is extremely dif6cult for N > 10 [19]. 
Because of the long computational time needed for the method, only a limited part of the 
configuration space can be scanned. On the conuary the use of a classical potential model 
removes this restriction and permits the scanning of a larger part of the configuration space. 
The model (7) was used to calculate the ground-state structure and cohesive energy of the 
cluster Si33. To optimize the structure of the Si33 cluster and to obtain its ground state we 
used the Monte Carlo simulated annealing (MCSA) technique. The initial guess was selected 
to be the structure given in [17] as a probable ground stak (figure l(a)). Then the MCSA 
method converged to a new structure after 3 x 16 hials. 

The structure obtained by this model as the ground state for the Si33 cluster exhibits 
important differences from the initial guess (figure l(b)). Specifcally, the average bond 
length is 2.65 A and the average coordination number is 6.8, while, in the structure proposed 
in 1171, the average bond length is 2.4 8, and the average coordination number is 3.5. 
Therefore the structure obtained by the classical model (7) has a structure similar to glass 
or liquid silicon, while the structure of the initial guess is more diamond like. The cohesive 
energy of the new structure is 3.89 eV atom-', while the cohesive energy of the metastable 
state (la) as calcualted by the same classical model is 3.51 eV atom-'. We also note 
that other workers employing the tight-binding energy minimization scheme of Tomanek 
and Schluter [201 for SL,s have obtained a more closepacked structure than proposed by 
Kaxiras [17]. 

The above result offers the possibility for a test of the validity of the classical model 
(7). In other words. the cohesive energy of both structures (figures l(a) and 1(b)) can be 
computed by the TBMD method. Using as an initial condition the structure in figure l(b), 
the TBMD calculation converged to the structure shown in figure I@). The cohesive energy 
of the new structure is 4.09 eV atom-', the average bond length is 2.5 8, and the average 

B = 11.581 A4 . (Y = 2.095 A R = 3.771 8, 
(8) 
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Figure 1. Ground-state strwhms for the Si33 ciustcr oMained by (a) ~ L D A  method I171, (b)  
the present classical model. (c )  the TBMD method and (d).thc dassical sw model. Tbe sfmcture 
shoun'in (d )  was used as an initial guess for obtaining the s t m m n  in (b) using the presea 
classical model. 

coordination number is 6.2. Therefore, this structm has the same qualitative characteristics 
as the ground-state smchlre obtained by the classical model (7). The striking agreement 
between the results of the TBMD method and the classical model strongly suggests the 
proposed structure to be a genuine ground state for Si33. 

Furthermore, we studied the same problem using the SW model is a typical three-body 
potential, in order to demonstrate the importance of the four-body terms. The ground-state 
struchlre obtained by the MCSA method is shown in figure l(d) and it has similar qualitative 
features, to the structure in figure l(a). Therefore, we have verified that the inaoduction 
of the four-body terms is essential for simulating the quantum results. Table 1 presents all 
the results for the Si33 cluster~obtained by the sw three-body model, the present four-body 
model and the TBMD method. 

Table 1. Comparison of the gmund-state svucfures of Si33 produced by the present foour-body 
patential model. the TBMD method, the WA method and the three-bady classical sw model. 

. .  

Mehod Average bond leneth (.&I Coordination number Cohesive e n e w  cer atm (ev) 

LDA 2.40 
sw 2.45 
Present model 2.65 
TBMD 2.50 

3.5 
3.7 
6.8 
6.2 

- 
3.35 
4.23 
4.09 
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The tight-binding method can also provide some information about the electronic 
structure of the Si33 cluster. Specifm"l the energy gap was found to be 0.52 eV. The 
same set of tight-binding parameters gives a gap of 1.13 eV for bulk silicon. Therefore, the 
cluster has a considerably suonger conducring character than the crystalline silicon. 

In conclusion we note that the inclusion of the four-body interaction is absolutely 
necessary to achieve good agreement between the classical and quantum descriptions of 
Si clusters. Moreover. the strucrural propexties of the Si33 ground state obrained by both 
the classical and the TBMD methods are qualitatively the same, i.e. the ground state of Si33 
is found to be not diamond like, conmy to previous suggestions. 

The successful simulation of cluster properties by the present model together with 
previous results on surface properties give a strong indication that this model could be 
considered to be closest to universal, which can be used to simulate, within acceptable 
limits of accuracy, the properties of all phases of silicon. Moreover, the verification of 
the Si33 ground-state structure, determined by the present model using the TBMD method, 
suggests imponant predictive possibilities for this model. The tight-binding model used here, 
although simple, still retains a l l  the salient features of other tight-binding schemes [16,18] 
used to obtain good agreement with ab inirio results for small clusters. Tight-binding 
methods generally seem to favour close-packed structures for these clusters, indicating 
a need to go to larger clusters to obtain bulk-like coordination. The inclusion of non- 
orthogonality may favopr more open s m c t w s  for small clusters than obtained using the 
orthogonal scheme. More work is needed in this area. 
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